
Communication Avoiding and Overlapping for

Numerical Linear Algebra

Evangelos Georganas
Jorge González-Domínguez
Edgar Solomonik
Yili Zheng
Juan Touriño
Katherine A. Yelick

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-65

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-65.html

May 8, 2012

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
08 MAY 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Communication Avoiding and Overlapping for Numerical Linear
Algebra

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California, Berkeley,Department of Electrical Engineering
and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
To efficiently scale dense linear algebra problems to future exascale systems, communication cost must be
avoided or overlapped. Communication-avoiding 2.5D algorithms improve scalability by reducing
inter-processor data transfer volume at the cost of extra memory usage. Communication overlap attempts
to hide messaging latency by pipelining messages and overlapping with computational work. We study the
interaction and compatibility of these two techniques for two matrix multiplication algorithms (Cannon
and SUMMA), triangular solve, and Cholesky factorization. For each algorithm, we construct a detailed
performance model which considers both critical path dependencies and idle time. We give novel
implementations of 2.5D algorithms with overlap for each of these problems. Our software employs UPC, a
partitioned global address space (PGAS) language that provides fast one-sided communication. We show
communication avoidance and overlap provide a cumulative benefit as core counts scale, including results
using over 24K cores of a Cray XE6 system.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

19

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Communication Avoiding and Overlapping for
Numerical Linear Algebra

Evangelos Georganas∗1, Jorge González-Domı́nguez†1, Edgar Solomonik∗,
Yili Zheng‡, Juan Touriño† and Katherine Yelick∗‡

∗Dept. of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA 94720
†Department of Electronics and Systems, University of A Coruña, A Coruña, Spain

‡Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Abstract

To efficiently scale dense linear algebra problems to future exascale systems, communication cost must be avoided or
overlapped. Communication-avoiding 2.5D algorithms improve scalability by reducing inter-processor data transfer volume at the
cost of extra memory usage. Communication overlap attempts to hide messaging latency by pipelining messages and overlapping
with computational work. We study the interaction and compatibility of these two techniques for two matrix multiplication
algorithms (Cannon and SUMMA), triangular solve, and Cholesky factorization. For each algorithm, we construct a detailed
performance model which considers both critical path dependencies and idle time. We give novel implementations of 2.5D
algorithms with overlap for each of these problems. Our software employs UPC, a partitioned global address space (PGAS)
language that provides fast one-sided communication. We show communication avoidance and overlap provide a cumulative
benefit as core counts scale, including results using over 24K cores of a Cray XE6 system.

I. INTRODUCTION

Communication cost is a significant factor in application performance, and hardware trends indicate that the cost of data
movement within and between nodes will continue to grow relative to the cost of computation. With exascale computing as the
long-term goal, the community needs to develop techniques that minimize communication cost through better algorithms,
programming techniques, systems software and architecture. In this paper, we consider two techniques to minimize the
performance impact of communication: communication-avoiding algorithms reduce the volume of communication, while
communication overlapping reduces the impact of each communication event by overlapping it with computation or with
other communication [1], [2]. We explore a set of parallel communication avoiding algorithms for dense linear algebra that
are provably optimal in their communication volume and have been shown to substantially reduce communication and thus
improve performance [3]. They are particularly beneficial for strong scaling (computing the same total problem-size on more
processors). These so-called “2.5D” algorithms trade-off extra memory and, in some cases, more messages in favor of reduced
use of bandwidth. Communication overlap changes neither volume nor the number of messages, but lowers the per-message
cost. To maximize the potential for overlap, we use one-sided communication as provided by the UPC language [4] and
schedule the communication to be hidden whenever possible.

Communication avoidance and communication overlap may appear to be orthogonal optimization strategies, but there are
complicated interactions and trade-offs if they are used together. With performance models incorporating both communication
avoidance and overlap, we systematically study how to combine and balance these two techniques for various linear algebra
algorithms with different problem sizes given the target system configurations.

We believe this is the first study that combines communication overlap with communication avoiding linear algebra algo-
rithms, and does so at the scale of tens of thousands cores. Specifically, we made the following contributions:
• Developed communication avoiding and overlapping implementations for three popular linear algebra computations:

matrix-multiplication, triangular solve and Cholesky factorization.
• Measured the performance of these algorithms on tens of thousands of processors, which are the first experimental results

on 2.5D implementations of triangular solve and Cholesky factorization.
• Compared the performance of 4 versions of each algorithm, i.e., a 2D and 2.5D algorithm, with and without overlap.
• Provided a methodology for performance modeling of communication avoiding and overlapping algorithms.
• Analyzed the performance trade-offs of communication avoidance versus communication overlap, and their combination,

under different situations.
In the following sections, we will first provide the necessary background for the classical (2D) and communication-avoiding

(2.5D) algorithms, and then have more detailed discussions on applying communication overlapping techniques to these
algorithms.

1Evangelos and Jorge contributed equally to this work and are listed alphabetically.

II. BACKGROUND

We studied parallel algorithms for three problems: Matrix Multiplication (MM), Triangular Solve (TRSM) and Cholesky
factorization. For MM, we compare Cannon’s algorithm [5] with a broadcast-based SUMMA [6]. Parallelization of TRSM and
Cholesky are more complex due to the introduction of a longer critical path in the problem. We describe 2.5D algorithms for
each of these problems [3]. This optimization attempts to avoid communication at the cost of a controlled increase in memory
usage.

A. Matrix multiplication

Matrix multiplication of two square n-by-n matrices computes the product

C[i, j] =
∑
k

A[i, k] ·B[k, j].

We study classical matrix multiplication, which computes all n3 multiplications, though the reduced-complexity Strassen’s
algorithm [7] can also minimize communication and outperform the classical algorithm in a high-performance setting [8].
Since each of the n3 multiplications can be done independently, parallelization is very simple to load balance and schedule.

Performing computation by blocks reduces the amount of data that must be moved between processors, as well as in
a memory hierarchy. 2D algorithms distribute matrices in blocks among processes and communicate on a 2D grid of p
processors. SUMMA performs communication with row and column broadcasts on this 2D grid. While SUMMA can flexibly
be formulated in terms of rank-1 updates, to minimize messages it is best to block these updates into bundles of up to n/

√
p.

Alternatively, these broadcasts can be done via all-gathers as implemented in the Elemental framework [9].
Cannon’s algorithm performs shifts of data among near-neighbor processes on a 2D grid of p processors, with blocks of size

n/
√
p-by-n/

√
p. The algorithm starts by performing a skew on the initial matrices along rows and columns of the processor grid.

The blocks are lined up so that at each subsequent step, only a single shift needs to be done between each block multiplication.
The advantage of Cannon’s algorithm over SUMMA is that it can reduce the latency cost by using near-neighbor sends rather
than collective communication. On the other hand, Cannon’s algorithm is hard to generalize to non-square processors grids.

3D matrix multiplication [10], [11], [12], [13] is a different parallelization of the problem, which partitions the 3D computa-
tional graph rather than the matrices. This algorithm stores blocks of A, B and a temporary C matrix redundantly and performs
independent updates on the copies of C, which are combined using a reduction operation at the end. Given sufficient memory,
the 3D algorithm is provably optimal in both number of messages and amount of data communicated between processors. The
effective block size becomes n/p1/3. The 2.5D formulation of this algorithm controls the trade off between memory usage
and communication by replicating the matrix to fill up as much extra memory as available. In particular, on p processors, the
3D algorithm stores p1/3 matrix copies, while the 2.5D algorithm works for any number of copies c ∈ [1, p1/3]. The 2.5D
algorithm typically operates with a block size of n/

√
p/c. Algorithm 1 describes the 2.5D version of the SUMMA algorithm

of a grid of processors Π with c layers of processors, each computing a different contribution to the matrix C. The 2.5D
version of Cannon’s algorithm, described in [3], also asymptotically minimizes both bandwidth and latency costs.

Algorithm 1: [C] = 2.5D-SUMMA(A,B,Π,n,c)
Input: On a cuboid grid Π, n-by-n matrix A and n-by-n matrix B, are each spread over Π[:, :, 0]
Output: square n-by-n matrix C = A ·B spread over Π[:, :, 0]

Replicate A and B on each Π[:, :, k], for k ∈ [1, c]

// Perform outer products on processor layers in parallel:
parallel for k = 0 to k = c− 1 do

// Each layer performs n/c rank-1 updates:
pipelined for t = 1 to t = n/c do

Broadcast A[:, k · n/c+ t] on columns of Π[:, :, k]
Broadcast B[k · n/c+ t, :] on rows of Π[:, :, k]
Ck := Ck +A[:, k · n/c+ t] ·B[k · n/c+ t, :]

end
end
// Compute C via a sum reduction:
C :=

∑c−1
k=0 Ck

Fig. 1. 2.5D Cholesky ’fat panel’ update broadcast.

B. Triangular solve

Triangular solve (TRSM) is used to compute a matrix X , such that X · U = B, where U is upper-triangular and B is a
dense matrix. This problem has dependencies across the columns of X , while each row of X can be computed independently.
For n-by-n matrices, solving this problem has the same asymptotic computational cost as matrix multiplication. The problem
has also been shown to require at least as much communication as matrix multiplication [14].

TRSM can be parallelized on a 2D processor grid with broadcasts or all-gathers used for communication between processors,
similar to SUMMA. At each step of the 2D algorithm, a block-column of X is computed. This block-column can then be used
to update the trailing matrix B. In particular, if we consider partitioning the matrices in blocks[

X1 X2

]
·
[
U11 U12

0 U22

]
=
[
B1 B2

]
,

the computation proceeds as follows,
1) compute column via TRSM, X1 = B1 · U−111 ,
2) compute update via product, B2 = B2 −X1 · U12,
3) compute next column via TRSM, X2 = B2 · U−122 .

If the matrices are subdivided in blocks among processes, it is necessary to communicate the sub-matrices U11 and later U22

along columns of the process grid, and to communicate the matrices X1 and U12 when performing the update.
Until X1 is computed, processes on the right portion of the processor grid are not occupied. Therefore, X1 is typically taken

to be a thin panel of the matrix, which yields significantly better load-balance. Communication is minimized by employing
a block-cyclic layout, where each process owns multiple sub-blocks of the matrices. In particular, each process Π[i, j] owns
blocks {X,U,B}kl where k = i+ r

√
p and l = j+ q

√
p for each r, q. The communication of X1 and U12, needed to perform

each update, becomes the dominant communication cost in this distribution.
2.5D TRSM lowers the bandwidth cost with respect to the 2D algorithm, when additional memory is available [3]. The 2.5D

algorithm employs an additional level of block hierarchy, by performing the update in two stages. The matrices are partitioned
into O(c) ’fat’ panels. Each fat panel of X is computed with the entire processor grid, arranged in a 2D rectangular layout
of
√
pc-by-

√
p/c processors. After each one of these 2D TRSMs, the rest of the ’fat’ panels are updated. This big update is

done as c independent outer-products, one on each layer. The update is accumulated redundantly and combined via reductions
by panel. For more details on the data layout and communication in this algorithm see [3].

C. Cholesky factorization

Cholesky factorization computes the factorization of a symmetric positive definite matrix A, into product of a lower triangular
matrix and its transpose, A = L · LT . The sequential algorithm performs a modified version of Gaussian Elimination. This
algorithm has a dependency path across both columns and rows of L. So, parallelization of this algorithm must efficiently
handle symmetry as well as load balance with consideration of both dependency paths.

We recall the 2D parallel algorithm for Cholesky by considering the factorization in blocks,[
A11 AT

21

A21 A22

]
=

[
L11 0
L21 L22

]
·
[
LT
11 LT

21

0 LT
22

]
.

System Cray XE6
Processor AMD Opteron “Magny-Cours”
Clock rate 2.1 GHz
Peak performance per core 8.4 Gflops
Cores per NUMA domain 6
NUMA domains per node 4 (packaged in 2 sockets)
Total cores per node 24
Private L1 data cache per core 64 KB
Private L2 data cache per core 512 KB
Shared L3 cache per NUMA domain 6 MB
Memory bandwidth 25.6 GB/s
Memory per node 32 GB DDR3-1066 ECC
Compiler Cray Compiler
Interconnect Gemini 3-D Torus
Peak Bandwidth (per direction) 7 GB/s

TABLE I
SPECIFICATIONS OF THE CRAY XE6 USED FOR OUR EXPERIMENTS

We can start in the top left corner and compute L as follows,
1) factorize block via Cholesky, A11 = L11 · LT

11,
2) update panel via TRSM, L21 = A21 · L−T11 ,
3) compute update via product, A22 = A22 − L21 · LT

21,
4) compute next block via Cholesky, A22 = L22 · LT

22.
Communication is required to send L11 across process columns, L21 across process rows and LT

21 across process columns.
Thus, the parallelization is very similar to TRSM, except that the sequential factorization needed to compute L11 must be done
before the panel TRSM. Further, less computation is involved in the symmetric update, while communication volume stays
just as large.

2.5D Cholesky is decomposed hierarchically in the same fashion as 2.5D TRSM. Figure 1 demonstrates how updates are
decomposed among processor layers and done on different matrix copies. Again, these updates are accumulated redundantly,
which uses extra memory, but reduces the bandwidth cost of the algorithm. A block-cyclic layout is again necessary to achieve
load-balance and minimize latency. Though, we note that the 2.5D parallelization actually slightly increases latency cost, which
is necessary to reduce bandwidth [3].

III. EXPERIMENTAL PLATFORM

Before starting the discussion on applying communication overlapping techniques to the aforementioned linear algebra
algorithms, we describe the hardware and software environments for our implementation because they are helpful to understand
some of the design decisions we choose. While our ideas are generally applicable to all systems, we take a step further to
optimize the tunable parameters specifically for our experimental platform.

A. Hardware

Our target system is a Cray XE6 supercomputer with 153,216 compute cores and 217 TB of memory in total. Each Cray
XE6 node has 24 cores, grouped by 6 in 4 Non-Uniform Memory Access (NUMA) domains. CPU cores have faster access
speed to local memory within the same NUMA domain but have slower access speed to remote memory in other NUMA
domains. Inter-node communication is done through the custom Cray Gemini Network, which is a high-bandwidth and low-
latency 3-D torus interconnect with hardware RDMA support. Table I lists the specifications of our experimental system. Cray
XK-6, a sister model of Cray XE6 with GPUs, also uses the same Gemini interconnect. Therefore, we expect our techniques
and software developed to be beneficial to a large class of many-petaflop systems important to the broad supercomputing
community.

B. Software

We choose Unified Parallel C (UPC) [4] , a PGAS extension of C99, to implement our applications. Modern networks, such
as the Gemini interconnect in Cray XE6, have special hardware support for RDMA offloading that facilitates communication
overlapping. Shan et al. [15] demonstrated that PGAS languages, such as UPC and CAF, can deliver substantially better
performance for non-blocking point-to-point communication over MPI on Cray XE6 because Gemini allows remote-node ref-
erences to be pipelined in these programming models. In addition, the global address space of UPC improves our programming
productivity for implementing global matrices with complex blocked data-layouts.

As in many scientific applications, the communication patterns in the algorithms that we studied can be conveniently
expressed by collective communication, which is usually optimized for the hardware platform by the vendor. The collectives

in the current UPC 1.2 specification don’t meet our needs because: 1) they don’t support collectives within a subset of threads
(i.e., no equivalent of MPI communicators); 2) they lack some of the necessary collective operations such as reduce and
allreduce for arrays. Thus we use MPI collectives to supplement UPC in our implementation.

Though hardware RDMA can transfer data without CPU intervention, it usually requires non-trivial amount of CPU cycles
for initialization. Therefore, hardware RDMA is more suitable for long messages, whose cutoff size is system-specific. For
short messages, the best latency is attained by attentive CPU polling. Collective communication often requires even more CPU
resources to proceed because they usually use more complicated algorithms that cannot be simply offloaded to the network. Thus
we use a dedicated Pthread to handle communication progress when overlapping collective communication with computation.

We use a hybrid (process/thread) parallelization model for all our benchmark runs. Specifically, we run one process per
NUMA domain and one thread per core within the NUMA domain. Each UPC thread is mapped an OS process and each
process uses 6 OS threads, 1 thread per core, via Pthreads and multi-threaded BLAS/LAPACK libraries. We implement our
parallel algorithms using local linear algebra routines provided by vendor-optimized libraries.

C. Performance characteristics

To guide our optimization with performance modeling, we develop a suite of micro-benchmarks to measure the system
parameters of the target computer. In addition, these performance numbers can also tell us the practical efficiency upper bound
of the respective operations.

1) Computation efficiency: Figure 2 shows the efficiency of the linear algebra routines used in our implementations for
different matrix sizes. For example, dgemm attains peak efficiency at 8MB matrix size (a 1024-by-1024 matrix of double
type).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 32 128 512 2048 8192 32768 131075

P
e

rc
e

n
ta

g
e

 o
f

M
a

c
h

in
e

 P
e

a
k

Matrix Size (KBytes)

Performance of BLAS Routines

dgemm
dtrsm
dpotrf

Fig. 2. Efficiency of the BLAS routines used in our algorithms. Run with 6 cores in a NUMA domain.

2) Network performance: We use the methodology in [16], [17], [18] to measure the LogGP parameters of the interconnect.
Figure 3 shows the inter-node network bandwidth for different message sizes. The network bandwidth peaks at 512KB messages.

 4200

 4400

 4600

 4800

 5000

 5200

 5400

 5600

 5800

 6000

 6200

 32 128 512 2048 8192 32768 131075

B
a

n
d

w
id

th
 (

M
B

y
te

s
/s

)

Matrix Size (KBytes)

Bandwidth of upcmemget()

bandwidth

Fig. 3. Inter-node network bandwidth using UPC one-sided communication

IV. SUMMA

A. Overlapping communication and computation

As explained in Section II-A, the SUMMA algorithm performs the matrix product based on broadcasts and outer products.
The main part of the 2D and 2.5D algorithm consists of a loop where each thread takes part in two broadcasts (related
to the grid row and column, respectively) and performs one BLAS matrix product (dgemm) per iteration. We develop new
versions of both the 2D and 2.5D algorithms that overlap communication and computation by starting the broadcast of the
next iteration while the dgemm of the current iteration is being performed. Most of UPC compilers provide support for
overlapping through asynchronous upc memget, upc memput and upc memcpy functions. However, they are limited to point-
to-point communications. In order to overlap the broadcast we create one Pthread that performs the part of this broadcast that
corresponds to that UPC thread. Thus, one core of the NUMA region is only used for communication and, at the same time,
the other five cores are used for computation by calling the multithreaded BLAS routines.

B. Implementation details

Despite the fact that UPC supports distributed arrays with blocked and cyclic layouts, it does not support blocking in
multiple dimensions which is necessary for implementing the 2D block and block-cyclic layouts. Therefore, instead of using
the UPC distributed arrays directly, we exploit the global address space to build a distributed data structure called directory.
This data structure uses global pointers, which can refer to memory associated with other UPC threads. After initializing this
data structure with the appropriate pointers, each UPC thread makes a local copy of the structure. Then, every time it needs
to access memory belonging to another UPC thread, it looks up the local directory and finds the corresponding global pointer.
This lookup is fast since it involves local data. Finally, the UPC thread uses the obtained global pointer to access the data. We
found these directories convenient for a few reasons. First, they facilitate the indexing over layers in the 2.5D algorithms. To
incorporate the notion of layers into the dictionary, it is sufficient to add an auxiliary dimension to the data structure. Second,
adding blocking levels into our data distributions degenerates into modifying some tunable parameters in the data structure.
This was helpful for the 2.5D algorithms where we deploy a two-level 2D block cyclic layout and this additional level of
blocking is substantial in controlling load balance and latency.

The memory requirements of each algorithm and the overheads included by their optimizations should be taken into account
in order to find the most suitable option for each scenario. In 2D SUMMA, each UPC thread must keep one square block of
size n/

√
p-by-n/

√
p per matrix. Additionally, two buffers of the same size are necessary to keep the data of the blocks of the

input matrices that must be multiplied during each iteration. Thus, they need 5n2/p elements. The number of blocks that must
be kept at the same time in the 2.5D algorithm are the same (3 blocks for the original matrices and 2 for the current iteration).
The only difference is that their dimension is n/

√
p/c and the memory requirements 5n2c/p elements (overhead of c).

When applying overlapping, we need to double the buffer size in order to keep, at the same time, the blocks of the current
iteration that are being multiplied and the blocks needed in the next iteration whose broadcast is being forwarded. Thus the
memory requirements are increased in 2n2/p and 2n2c/p elements because of using overlapping in the 2D and 2.5D algorithms,
respectively.

C. Experimental results

The percentage of peak flops of the target system described in Section III obtained by each SUMMA algorithm are illustrated
in the graphs of Figure 4. These results were taken using double precision from 1,536 to 24,576 cores (from 256 to 4,096 UPC
threads). Results for the 2.5D algorithms were obtained using different values for the replication factor c, showing always the
best (in these scenarios c = 4). On 1,536 cores, for a matrix size of 32,768-by-32,768 doubles, replication (2.5D algorithms)
could not be done due to insufficient memory.

First, these results prove that communication avoiding and overlapping techniques are complementary as the version that
combines them obtains the best performance for a large number of cores (even double of performance than the basic 2D
version for 24,576 cores). Comparing both techniques, the more cores we use the more significant is the improvement obtained
by the 2.5D algorithms. However, they are not very beneficial for 1,536 cores, and the overlapped 2D version is the best
option. The reason is that, although the time due to the broadcasts of the loop decreases, the overhead introduced by the initial
replication and the final reduction of the matrices across layers offsets the reduced intra-layer communication. Thus, we see
that the overlapping technique is more beneficial for a low/medium number of cores while communication avoidance has more
influence while we increase this number, although the two techniques can be combined.

V. CANNON’S ALGORITHM

A. Overlapping communication and computation

The structure of Cannon’s algorithm is quite similar to that of SUMMA. Apart from the initial skew of the matrices, the
main difference is that in each iteration the threads only need to shift the blocks of the input matrices by rows/columns of the

 0

 5

 10

 15

 20

 25

 30

 35

 1536 6144 24576

P
e

rc
e

n
ta

g
e

 o
f

M
a

c
h

in
e

 P
e

a
k

Number of cores

SUMMA on Hopper (n=16384)

2D
2D-overlp
2.5D
2.5D-overlp

 0

 10

 20

 30

 40

 50

 60

 70

 1536 6144 24576

P
e

rc
e

n
ta

g
e

 o
f

M
a

c
h

in
e

 P
e

a
k

Number of cores

SUMMA on Hopper (n=32768)

2D
2D-overlp
2.5D
2.5D-overlp

Fig. 4. Performance of the SUMMA algorithm

grid. Similarly to SUMMA, the Cannon’s 2D and 2.5D algorithms have been optimized by forwarding the shift of the blocks
needed in the next iteration and overlapping it with the BLAS matrix product of the current iteration. Two options arise for
this overlapping: using Pthreads as in SUMMA or the asynchronous upc memget functions available in the compilers. We
have developed a benchmark that compares the overlapping capabilities of each approach and determined that the usage of
asynchronous copies is better than Pthreads, especially as the computation costs can also be divided among the 6 cores of the
NUMA region. Therefore, overlapping in Cannon’s is implemented using asynchronous upc memget functions.

B. Implementation details

In the 2D algorithm, instead of synchronizing all threads at each iteration so that each of them takes the data from the next
one, we use one buffer so that each UPC thread can store two blocks of each matrix at the same time. The blocks used in the
iteration i+ 1 will be kept in the part of the memory where the blocks used in i− 1 were stored. Therefore, the blocks that
must be shifted to another UPC thread (the ones used for computation in iteration i) are not corrupted because of copying the
next ones. The shifts are made by the the receiving UPC thread using upc memget.

The memory requirements of Cannon’s algorithm are also quite similar to those of SUMMA. The block sizes are again
n/
√
p and n/

√
p/c in the 2D and 2.5D cases, respectively. Since one buffer is needed to shift the blocks of the input matrices

the memory requirements are 5n2/p and 5n2c/p too. Thus, again the memory overhead because of using the 2.5D version is
indicated by c. The overlapping technique only needs memory to store two blocks of each input matrix so it does not lead to
any memory overhead.

C. Experimental results

A study of the performance of the different versions of Cannon provides two insights. On the one hand, the observed
performance is better than SUMMA (for instance, around 25% for 24,576 cores). The reason is that the latency cost is reduced
because of using point-to-point communications with upc memget instead of collectives. This issue is even more significant in
PGAS languages with one-sided communications because the source and destination threads do not need to be synchronized.
On the other hand, the conclusions of the comparison among the different approaches are quite similar to SUMMA, in spite
of using a different technique to apply overlapping (asynchronous upc memget instead of Pthreads): communication avoidance
seems to be more beneficial for a large number of cores while overlap help more at a smaller scale.

Figure 5 shows the performance breakdown using 1,536 and 24,576 cores for a 16,384x16,384 matrix in order to help us
to explain the reasons for this behavior. The communication label represents the time of the point-to-point copies within the
loop. The initial shift also includes the broadcast along the layers used in the 2.5D approaches. When using 1,536 cores,
the communication and computation times of the 2D algorithm are very similar, so the overlapping technique improves the
performance significantly. The 2.5D approach significantly reduces the communication time, but not enough to compensate for
the overhead introduced by the broadcast of the initial shift and the final reduction. Furthermore, its combination with overlap
is not especially worthy as communication and computation times are not balanced. However, for 24,576 cores, the difference
between the communication and computation times in the 2D algorithm limits the influence of the overlapping technique
and the application of the communication avoidance is worthy even with the overheads (especially combined to overlapping
communication and computation as their execution times are similar).

 0

 500

 1000

 1500

 2000

 2500

2D (1536) 2.5D (1536) 2D (24576) 2.5D (24576)

T
im

e
 (

m
s
)

Performance Breakdown for Cannon (n=16384)

initial shift
communication
computations
synchronization
reduction

Fig. 5. Performance breakdown of the Cannon algorithm using 1,536 and 24,576 cores for a 16,384x16,384 matrix

VI. TRIANGULAR SOLVE

A. Overlapping communication and computation

The main bottleneck of the 2D triangular solve is the update of the matrix using dgemm (matrix multiplication): B2 =
B2 −X1 ·U12. Since, in this case, the block U12 is always available to be broadcast along the columns of the grid, we opted
to overlap this update with the broadcast of the blocks of U needed in the dgemm call of the following iteration, using the
Pthreads mechanism also applied in SUMMA.

B. Implementation details

The 2D TRSM has been described in Section II-B. However, we develop a different 2.5D approach to the one explained
in [3]. This new approach follows the same scheme as 2.5D algorithms (using c layers if there is enough memory) but without
minimizing the total amount of communication. The communication times just decrease because we reduce the number of cores
involved in each broadcast and, thus, the contention of the network. This algorithm takes advantage of the rows of X that can
be computed independently to avoid the reductions and, in general, minimizes the communication and synchronization among
layers. The initial distribution of the matrices in one layer is the same as for the 2D algorithm, a block-cyclic distribution along
the
√
p/c threads in each dimension. Thus, if each UPC thread has r blocks in each dimension, the block size is n/r

√
p/c-

by-n/r
√
p/c. In the beginning, we replicate the triangular matrix along layers (as input matrices in the 2.5D algorithms for

the matrix product) but distribute the rows of each block of X among them. We remark that there are two levels of blocking
for X , each UPC thread has r2 rectangular blocks of n/cr

√
p/c-by-n/r

√
p/c elements. With this distribution, each layer

computes a subset of the rows of X via a 2D TRSM with its
√
p/c-by-

√
p/c grid of threads. The distributed rows must be

gathered once the layers finish their computation.
In this new 2.5D TRSM, most of the computation is completely independent among layers because only one synchronization

is necessary to know the moment when all them have finished and the final gather must be performed. The main advantage
of this approach over the algorithm shown in [3] is that it replaces the c reductions across layers with only one final gather.
Besides, it keeps the advantage of reducing the communication times with respect to the 2D approach because the broadcasts
within one layer involve less UPC threads and are faster. The 2.5D algorithm can also overlap the matrix update of the current
iteration with the broadcast of the blocks of U needed in the next one.

With regard to the memory requirements we remark that in this problem there are two matrices of different type: X , which
is a dense matrix and U , which is a triangular matrix where only the elements above the main diagonal are stored. In the 2D
algorithm, where r is the factor that indicates the number of blocks per thread in each dimension in the block-cyclic distribution,
the block size is n/r

√
p-by-n/r

√
p. In the dense matrix X , each thread owns n/

√
p rows and columns so they must store

n2/p elements of this matrix. Nevertheless, only blocks above or in the main diagonal of matrix U are stored so UPC threads
do not need the same amount of memory. We consider the UPC threads with the largest requirements which are r(r + 1)/2
blocks. It means that n2(r + 1)/2rp elements of the initial triangular matrix must be stored in the worst case. Furthermore,
additional buffers are needed to perform the broadcasts (one column block of X and one row block of U). Simplifying, the
memory requirements of the 2D TRSM are n2(r2 + 5r + 2)/2pr2 elements.

In the 2.5D algorithm the initial matrices are distributed in a 2D block-cyclic way among the UPC threads within the first
layer. Thus, these threads will need the same amount of blocks but with size n/r

√
p/c-by-n/r

√
p/c. As the number of blocks

to store in the buffers is also the same as in the 2D algorithm, the memory requirements are multiplied by c.

The overlapping technique for TRSM only increases the memory requirements because of an additional buffer needed to
store the data of U that will be used in the next iteration update. Thus, the 2D and 2.5D algorithms need n2/rp and n2/rpc
more elements, respectively.

C. Experimental results

The experimental evaluation of TRSM is shown in Figure 6. The matrix size is up to 65,536-by-65,536 doubles because
of needing only two matrices. As in the previous algorithms, the 2.5D algorithm with overlap is the best choice for almost
all the scenarios. Studying both techniques independently, the minimization of contention reduces the communication time
more significantly than the overlapped 2D approach when using a large number of cores. Nevertheless, the best option for the
smallest scenario (1,536 cores and matrices of 32,768-by-32,768 doubles) is again the overlapped 2D algorithm.

 0

 5

 10

 15

 20

 25

 30

 35

 1536 6144 24576

P
e

rc
e

n
ta

g
e

 o
f

M
a

c
h

in
e

 P
e

a
k

Number of cores

Triangular Solve on Hopper (n=32768)

2D
2D-overlp
2.5D
2.5D-overlp

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1536 6144 24576

P
e

rc
e

n
ta

g
e

 o
f

M
a

c
h

in
e

 P
e

a
k

Number of cores

Triangular Solve on Hopper (n=65536)

2D
2D-overlp
2.5D
2.5D-overlp

Fig. 6. Performance of the triangular solver

VII. CHOLESKY FACTORIZATION

A. Overlapping communication and computation in Cholesky

As in the triangular solve, the bottleneck of the 2D Cholesky factorization is the update of the trailing matrix A22 =
A22 − L21 · LT

21 (described in Section II-C). This update can be decomposed in two phases: first, the required sub-blocks of
L21 and LT

21 are received via two consecutive broadcasts and then dgemm operations follow to update the corresponding blocks
of A22. However we should emphasize that the dependencies of Cholesky differ substantially from those of triangular solve.
In this case the dependencies are across columns and rows of the original matrix. Furthermore, the critical path includes the
factorization of the diagonal matrix blocks in a sequential way.

Due to the aforementioned dependencies, we opted to overlap computation and communication in the update of trailing
matrix. These operations are illustrated in Figure 7. Initially we factorize the first column of blocks and we execute two back
to back broadcasts to transfer it to the involved UPC threads. Note that we store the received blocks in auxiliary buffers. Then,
instead of updating the whole trailing matrix, we update only the second column of blocks with dgemms and continue with
its factorization. This slight modification creates a pipeline and provides an overlapping opportunity at the next step. While
we broadcast the second column of factorized blocks, we can simultaneously update the rest of the trailing matrix using the
buffered first column of factorized blocks. This part of the trailing matrix is depicted with yellow color in Figure 7 and the
two back to back broadcasts are depicted with blue arrows. As soon as the two overlapped operations synchronize, we update
with dgemms only the third column of blocks in respect to the second factorized column (which is just received), then we
factorize it and the same overlapping schedule remains active until the whole matrix is factorized.

The memory overhead for this overlapping schedule consists of the auxiliary buffers for two columns of blocks (one buffer
for the blocks received from the row broadcast and one buffer for the blocks received during the column broadcast). In order
to fill the pipeline and to initiate the overlapping schema, only two broadcasts are required. In other words, all except two of
the consecutive broadcasts are overlapped with computations. This kind of overlapping hides both the bandwidth/latency costs
of the two broadcasts and also the idle times resulting from them.

The 2.5D algorithm decomposes the updates of the trailing matrix on different layers as it is depicted in Figure 1. So each
layer is responsible for updating its matrix using a sub-panel of columns (the red ones in Figure 1). Since we are implementing
a two level blocking as previously described, each red sub-panel consists of multiple columns of blocks. Thus we can adopt
a similar overlapping schema as in the 2D algorithm. Initially we broadcast the first of these columns and we store the
received blocks in auxiliary buffers. At the next step, we update the trailing matrix with dgemms using the buffered blocks

Fig. 7. Overlapping computations and communication in 2D Cholesky

and simultaneously broadcast the second of the columns. Again the memory overhead due to overlapping is the space needed
for two auxiliary column-buffers.

B. Implementation details

Since the input matrix A is symmetric, we must store only the elements lying on and below the diagonal. So, in Figure 1
the gray blocks are not stored, instead their values can be obtained explicitly by transposing their symmetric blocks. Thus, the
transfer of L21 across rows and LT

21 across columns that are mentioned in Section II-C, are implemented as two consecutive
team broadcasts: During the second broadcast, the UPC threads lying on the diagonal send to their column-team the blocks
received from their row-sender during the first broadcast. Finally, we emphasize here that the 2.5D algorithm deploys a two
level blocking: On a first level, we block the matrix into “fat panels” on each layer and the result of this blocking is shown in
Figure 1. At a next level we further block each “fat panel”. This two level blocking is crucial for achieving load-balancing and
minimizing latency. Moreover, 2.5D Cholesky proceeds in logical steps where it first factorizes a column of “fat panels” and
then updates the trailing matrix. To take significant advantage from the 2.5D algorithm we should have as many “fat panels”
as possible in our matrix decomposition. In this case, we will spend more time on the updates of trailing matrices, which can
be done at high computational efficiency.

Regarding the exact memory requirements, the 2D algorithm has to store n2/2 elements (i.e. half of the matrix A) and
since we utilize p UPC threads, each thread stores n2/(2p) elements. If we apply the 2D block-cyclic layout r times in each
dimension, each thread allocates two communication buffers with total size 2n2/(pr) elements. This means that the aggregate
memory overhead for the 2D algorithm with overlapping consists of 2n2/r elements. Finally, in the 2.5D algorithm we store
c replicas of the initial matrix and on each replica we assign p/c threads. Hence, all the memory requirements are multiplied
by a factor of c for 2.5D and 2.5D with overlapping respectively.

C. Experimental results

 0

 5

 10

 15

 20

 25

 30

 24576 6144 1536

P
e

rc
e

n
ta

g
e

 o
f

M
a

c
h

in
e

 P
e

a
k

Number of cores

Cholesky on Hopper (n=32768)

2D
2D-overlp
2.5D
2.5D-overlp

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 24576 6144 1536

P
e

rc
e

n
ta

g
e

 o
f

M
a

c
h

in
e

 P
e

a
k

Number of cores

Cholesky on Hopper (n=65536)

2D
2D-overlp
2.5D
2.5D-overlp

Fig. 8. Performance of Cholesky

The experimental results for Cholesky factorization are shown in Figure 8. We conclude that overlap helps improve the
performance of both 2D and 2.5D algorithms. However, 2.5D does not incur as much benefit from overlap as 2D does because
of the “fat panel” factorization phase, where no overlap is exploited by our implementation. If we examine the two optimization
techniques independently, we observe that overlap gives significant boost to the 2D Cholesky factorization. On the other hand,
communication avoidance is not beneficial up to 6,144 cores, while on 24,576 cores the 2.5D version meets the performance
of the 2D algorithm. As explained in the previous section, we want as many “fat panels” as possible in the 2.5D case and this
can lead to very small block sizes. The latter fact implies reduced BLAS efficiency which in turn increases both computation
and idle times1. For this reason, we expect the 2.5D algorithm to give a significant performance boost when the input matrix
is even larger. Finally, from the given strong scaling graphs one can infer that overlapping is beneficial in weak scaling too. In
theory, the ratio of computation/communication remains the same as we weak-scale, so overlapping should provide equivalent
gains. For 1,536 cores and n=32,768 overlapping decreases the execution time of the 2D version by 24% and similarly for
6,144 cores and n=65,536 (i.e. 4× cores and 4× problem size) the decrease in execution time via overlapping is 26%.

VIII. METHODOLOGY FOR CONSTRUCTING PERFORMANCE MODELS

In this section we describe the general methodology of developing detailed performance models for the aforementioned
algorithms. Our ultimate objective is to maximize the performance for any given problem, so we opt to design detailed
performance models that indicate the algorithm to execute and, additionally, provide an auto-tuning framework for the tunable
parameters among the various algorithms.

Our performance models track the execution flow of each algorithm and estimate the completion time for every encountered
operation, whether it is a BLAS call or a communication operation. In regard to the overlapped operations, the models predict
the execution time as the maximum expected completion time of each individual operation. So, the models measure the
execution time in the critical path taking into account the computation time, possible idle time due to load imbalance, and the
communication time. To make accurate estimates for the BLAS and communication calls, the models employ input arguments
which are machine and algorithm dependent.

First of all, a problem set-up is defined by the matrix dimension n and the available number of processors p. The algorithms
that leverage a 2D block cyclic distribution for the matrix partitioning have an extra parameter r that defines how many times
we apply this 2D block cyclic distribution on the input matrix (i.e. if the distribution is simply pure block 2D then r = 1).
Finally, the 2.5D algorithms have a parameter c that specifies the replication factor. For Cholesky and triangular solve, a 2D
block cyclic distribution is applied on each replicated layer since we have implemented a two level blocking as it is described
in Sections VI and VII. So, given the parameters n, p, r, c we can find out the block size that each BLAS call operates on
and we can specify the exact number of processors and words involved in each communication operation.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2D 2D-est 2.5D 2.5D-est

T
im

e
 (

m
s
)

Real and estimated times for SUMMA (n=16384)

computation
communication

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

2D 2D-est 2.5D 2.5D-est

T
im

e
 (

m
s
)

Real and estimated times for Cholesky (n=65536)

computation+idle
communication

Fig. 9. Comparison of the real and the estimated performance for SUMMA and Cholesky in experiments with 1,536 cores

All the previous parameters are platform independent. We should somehow support the computation and communication
estimations with some additional machine dependent parameters. Specifically, we utilize the following multithreaded BLAS
routines: dgemm, dpotrf, and dtrsm. We run micro-benchmarks on the target platform to get the efficiency of each routine as a
function of the input matrix size. The corresponding results for the multithreaded BLAS routines with six threads on Hopper
are illustrated in Figure 2. From these results we can make an accurate prediction about the execution time of each BLAS

1An optimization we are working on is to aggregate the BLAS operations into larger rectangular blocks so that we can avoid the side-effect of reduced
BLAS efficiency

call since we know the exact block size of the inputs. Furthermore, we model each point-to-point communication based on
the number of the transferred words, the network bandwidth and the latency. The last two parameters depend on the message
size, thus we benchmark the network performance using the LogGP model as explained in Section III-C. The model for the
collective operations uses the same parameters, the number of participating processes and a binomial function.

An overview of the accuracy of our performance models is shown in Figure 9. We use SUMMA and Cholesky with 1,536
cores as examples. Our methodology provides models that predict correctly the computation and idle times. However, their
estimations of the communication times are very optimistic. The reason is that the contention of the network significantly
influences the performance of the algorithms but it is not included in the LogGP model. Via the inclusion of the contention in
the models, they could potentially estimate correctly the performance of the algorithms. We refer the reader to the appendix
for the exact equations resulting from this methodology.

IX. CONCLUSION

Minimizing communication cost in parallel algorithms is key to improving performance for current and future supercomputers.
Through the case studies of four numerical algorithms, we have demonstrated that combining communication avoiding and
overlapping techniques is effective and can significantly reduce execution time in most cases. The priority of applying these two
techniques depends on the algorithm, the problem size and the machine configuration. The trade-offs between communication
avoidance and overlap include computation cost, communication cost, and memory usage. We developed performance models
that could be used to predict the benefits of these optimization techniques but we also found that estimating communication
time precisely was very difficult in the presence of unpredictable network contention.

In addition, we have a couple of interesting observations about parallel programming models in our research: 1) Hardware
RDMA support in modern interconnects enables very efficient communication overlapping with PGAS languages such as
UPC in our case. 2) Our implementations employed three different parallel programming models (UPC, MPI and Pthreads)
to meet our algorithmic needs and fully realize the hardware potential. However, this is unfavorable in terms of programming
productivity and indicates that more research in parallel programming is still much needed.

While we have successfully showed how to use communication avoiding and overlapping techniques to improve performance
for a few linear algebra problems, many research questions remain, for example: 1) Can we automate the process of applying
these optimizations and selecting the right parameters by using performance models and empirical search? 2) Can we extend
communication avoidance and overlap to other interesting problems, especially those of irregular parallelism? and 3) What new
hardware features can assist these two techniques? We hope our work will inspire more future work in the quest of minimizing
communication cost.

ACKNOWLEDGMENT

This research was supported in part by the Office of Science of the U.S. Department of Energy (DE-AC02-05CH11231),
DARPA (HR0011-10-9-0008), the Ministry of Science and Innovation of Spain (TIN2010-16735) and the Ministry of Education
of Spain under the FPU research grant AP2008-01578. The third author was supported by a Krell Department of Energy
Computational Science Graduate Fellowship, grant number DE-FG02-97ER25308. This research used resources of the National
Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231. The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government.

REFERENCES

[1] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, “Optimizing bandwidth limited problems using one-sided communication and overlap,” in Proc. 20th
Intl. Parallel and Distributed Processing Symposium (IPDPS’06), 2006.

[2] R. Nishtala, P. H. Hargrove, D. O. Bonachea, and K. Yelick, “Scaling communication-intensive applications on BlueGene/P using one-sided communication
and overlap,” in Proc. 23rd Intl. Parallel and Distributed Processing Symposium (IPDPS’09), 2009.

[3] E. Solomonik and J. Demmel, “2.5D algorithms for parallel dense linear algebra,” Concurrency and Computation: Practice and Experience, 2012, to
appear.

[4] “UPC language specifications, v1.2,” Lawrence Berkeley National Lab, Tech. Rep. LBNL-59208, 2005.
[5] L. E. Cannon, “A cellular computer to implement the kalman filter algorithm,” Ph.D. dissertation, Montana State University, 1969.
[6] R. van de Geijn and J. Watts, “SUMMA: scalable universal matrix multiplication algorithm,” Concurrency and Computation: Practice and Experience,

vol. 9, no. 4, pp. 255–274, 1997.
[7] V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathematik, vol. 13, pp. 354–356, 1969.
[8] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz, “Communication-optimal parallel algorithm for Strassen’s matrix multiplication,” UC

Berkeley, Tech. Rep. EECS-2012-32, 2012.
[9] J. Poulson, B. Maker, J. R. Hammond, N. A. Romero, and R. van de Geijn, “Elemental: A new framework for distributed memory dense matrix

computations,” ACM Transactions on Mathematical Software, 2012, to appear.
[10] E. Dekel, D. Nassimi, and S. Sahni, “Parallel matrix and graph algorithms,” SIAM Journal on Computing, vol. 10, no. 4, pp. 657–675, 1981.
[11] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar, “A three-dimensional approach to parallel matrix multiplication,” IBM J. Res.

Dev., vol. 39, pp. 575–582, 1995.
[12] A. Aggarwal, A. K. Chandra, and M. Snir, “Communication complexity of PRAMs,” Theoretical Computer Science, vol. 71, no. 1, pp. 3–28, 1990.
[13] S. L. Johnsson, “Minimizing the communication time for matrix multiplication on multiprocessors,” Parallel Computing, vol. 19, pp. 1235–1257, 1993.

[14] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, “Minimizing communication in linear algebra,” SIAM J. Mat. Anal. Appl., vol. 32, no. 3, 2011.
[15] H. Shan, N. J. Wright, J. Shalf, K. Yelick, M. Wagner, and N. Wichmann, “A preliminary evaluation of the hardware acceleration of the Cray Gemini

interconnect for PGAS languages and comparison with MPI,” in Proc. 2nd Intl. Workshop on Performance Modeling, Benchmarking and Simulation of
High Performance Computing Systems (PMBS’11), 2011, pp. 13–14.

[16] C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove, P. Husbands, C. Iancu, M. Welcome, and K. Yelick, “An evaluation of current high-performance
networks,” in Proc. 17th Intl. Parallel and Distributed Processing Symposium (IPDPS’03), 2003.

[17] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and T. von Eicken, “LogP: Towards a realistic model
of parallel computation,” in Proc. 4th ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming, 1993, pp. 1–12.

[18] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman, “LogGP: Incorporating long messages into the LogP model,” Journal of Parallel and
Distributed Computing, vol. 44, no. 1, pp. 71–79, 1997.

APPENDIX

PERFORMANCE MODEL FOR SUMMA

Being n the dimension of the matrices and p the number of threads we can determine that the dimension of each small
block is block dim = n/

√
p. Besides, the following functions are defined:

• Tdgemm(dim, t): It returns the estimated time to perform the BLAS matrix-matrix product using matrices with dimension
dim and t OpenMP threads. This estimation is done using the results of the benchmark showed in Figure 2.

• Tbcast(p, words): It returns the estimated time to perform a broadcast among p UPC threads. As most of broadcast
implementations use binomial trees, this function is based on a binomial function that takes into account the p number of
threads involved in the communication and the words number of elements, the latency of the system L and the inverse
bandwidth (in seconds/word) β showed in Figure 3: Tbcast(p, words) = log2(p)(L+ βwords)

The estimation functions for 2D SUMMA (with and without overlap) are based on the following equations:

TSUMMA 2D =
√
p ∗
(

2 ∗ Tbcast(
√
p, block dim2) + Tdgemm(block dim, 6)

)

TSUMMA 2D overlp =
√
p ∗
(
max

[
2 ∗ Tbcast(

√
p, block dim2), Tdgemm(block dim, 5)

])
For the 2.5D algorithms, a new parameter c, as the replication factor, must be taken into account. In this case block dim

is n/
√
p/c. Furthermore, we design a new function Treduce(p, words) whose expression is exactly the same as Tbcast. Thus

the performance estimations are:

TSUMMA 2.5D = 2 ∗ Tbcast(c, block dim2) +
√
p/c ∗

(
2 ∗ Tbcast(

√
p/c, block dim2) + Tdgemm(block dim, 6)

)
+

Treduce(c, block dim2)

TSUMMA 2.5D overlp = 2 ∗ Tbcast(c, block dim2) +√
p/c ∗

(
max

[
2 ∗ Tbcast(

√
p/c, block dim2) + Tdgemm(block dim, 5)

])
+

Treduce(c, block dim2)

PERFORMANCE MODEL FOR CANNON

Apart from the functions described for the SUMMA model, a new one to determine the estimated time of a certain point-
to-point communication is designed for Cannon:

• Tcomm(words): It returns the estimated time to perform the copy of the following block to compute in Cannon for only
one matrix. It is based on the words number of elements, the latency of the system L and the inverse bandwidth (in
seconds/word) β showed in Figure 3: Tcomm(words) = L+ βwords

As in SUMMA the dimensions of each block are block dim = n/
√
p and block dim = n/

√
p/c for the 2D and the 2.5D

algorithms, respectively. Thus, the models for Cannon are:

TCannon 2D =
√
p ∗
(

2 ∗ Tcomm(block dim2) + Tdgemm(block dim, 6)
)

TCannon 2D overlp = 2 ∗ Tcomm(block dim2) + (
√
p− 1) ∗

(
max

[
2 ∗ Tcomm(block dim2), Tdgemm(block dim, 6)

])
+

Tdgemm(block dim, 6)

TCannon 2.5D =
√
p/c ∗ (2 ∗ Tcomm(block dim2) + Tdgemm(block dim, 6)) + Treduce(c, block dim2)

TCannon 2.5D overlp = 2 ∗ Tcomm(block dim2) + (
√
p/c− 1) ∗

(
max

[
2 ∗ Tcomm(block dim2), Tdgemm(block dim, 6)

])
+

Tdgemm(block dim, 6) + Treduce(c, block dim2)

PERFORMANCE MODEL FOR THE TRIANGULAR SOLVE

As explained in Section VI, block dim = n/r
√
p for the 2D TRSM. After naming Tdtrm(dim, t) to the function that

estimates the time to perform the BLAS triangular solve, we model the performance as:

TTRSM 2D =

r
√
p∑

i=0

(
((
√
p ∗ (r + 1)− i)/√p) ∗ Tbcast(

√
p, block dim2) + Tdtrsm(block dim, 6) +

Tbcast(
√
p, r ∗ block dim2) + ((

√
p ∗ (r + 1)− i)/√p) ∗ r ∗ Tdgemm(block dim, 6)

)
+

Tbcast(
√
p, block dim2) + Tdtrsm(block dim, 6)

TTRSM 2D overlp = b ∗ Tbcast(
√
p, block dim2) +

r
√
p−1∑

i=0

(
(Tdtrsm(block dim, 5) + Tbcast(

√
p, r ∗ block dim2) +

(
√
p ∗ (r + 1)− i)/√p) ∗max

[
Tbcast(

√
p, block dim2), r ∗ Tdgemm(block dim, 5)

])
+

Tdtrsm(block dim, 5)

Although there are two different block sizes in the 2.5D algorithm, our models are based on the one for the triangular
matrix (it means, block dim = n/r

√
p/c). The final gather of X is estimated to have the same performance as the reductions.

Therefore, the estimation functions for 2.5D TRSM are based on the following equations:

TTRSM 2.5D = 2 ∗ r2 ∗ Tbcast(c, block dim2) +

r
√

p/c∑
i=0

(
((
√
p/c ∗ (r + 1)− i)/

√
p/c) ∗ Tbcast(

√
p/c, block dim2) +

Tdtrsm(block dim, 6)/c2 + Tbcast(
√
p/c, (r/c) ∗ block dim2) +

(
√
p/c ∗ (r + 1)− i) ∗ r ∗ Tdgemm(block dim, 6)

c
√
p/c

)
+ r2 ∗ Treduce(c, block dim2)

TTRSM 2.5D overlp = 2 ∗ r2 ∗ Tbcast(c, block dim2) + b ∗ Tbcast(
√
p/c, block dim2) +

r
√

p/c−1∑
i=0

(
(Tdtrsm(block dim, 5)/c2 + Tbcast(

√
p/c, (r/c) ∗ block dim2) +

(
√
p/c ∗ (r + 1)− i) ∗max

[
Tbcast(

√
p/c, block dim2), r ∗ Tdgemm(block dim, 5)/c

]
√
p/c

)
+

Tdtrsm(block dim, 5)/c+ r2 ∗ Treduce(c, block dim2)

PERFORMANCE MODEL FOR CHOLESKY

The performance estimation of the Cholesky algorithms are based on the functions already described for the other routines
and these additional definitions:
• Tchol(dim, t): The execution time of a multithreaded dpotrf (cholesky) BLAS call for a matrix with dim dimension using
t OpenMP threads.

• δarg(x) =

{
1 , if x = arg

0 , otherwise

The execution time of the 2D Cholesky algorithms is given by the following equation:

TChol 2D =

r−1∑
pan it=0

√
p−1∑

in it=0

(
Tchol(block dim, 6) + Tbcast(

√
p, block dim2) +

(r − pan it) ∗ Tdtrsm(block dim, 6) + 2 ∗ Tbcast(
√
p, (r − pan it) ∗ block dim2) +[(r − pan it− 1)(r − pan it)

2
+ δ√p−1(in it)(r − pan it)

]
∗ Tdgemm(block dim, 6)

)
TChol 2D overlp = 2 ∗ [Tchol(block dim, 5) + Tbcast(

√
p, block dim2) + r ∗ Tdtrsm(block dim, 5)] +

2 ∗ Tbcast(
√
p, r ∗ block dim2) + r ∗ Tdgemm(block dim, 5) +

√
p∗r−2∑
col=1

(
max

[
2 ∗ Tbcast(

√
p, (r − pan it) ∗ block dim2), C ∗ Tdgemm(block dim, 5)

]
+

(r − pan it next) ∗ Tdgemm(block dim, 5) + Tchol(block dim, 5) +

Tbcast(
√
p, block dim2) + (r − pan it next) ∗ Tdtrsm(block dim, 5)

)
where we have denoted:

• pan it = col/
√
p

• in it = col mod
√
p

• pan it prev = (col − 1)/
√
p

• in it prev = (col − 1) mod
√
p

• pan it next = (col + 1)/
√
p

• in it next = (col + 1) mod
√
p

• C = (r−pan it prev−1)(r−pan it prev)
2 + δ√p−1(in it prev)(r − pan it prev)− r + pan it

In the 2.5D case the “fat panels” of the algorithm consist of panel dim columns of smaller blocks and the number of
“fat panels” is panels num = r

√
p/c/panel dim. Thus, the dimension of each smaller block is: block dim = n/r

√
p/c.

Moreover, we introduce here the communication model for an Allreduce operation. We assume that an Allreduce operation is
implemented as a reduction, followed by a broadcast: TAllreduce(p, words) = 2 ∗ log2(p)(L + βwords). The execution time
for the communication avoiding algorithms is given by the following equations:

TChol 2.5D =

r−1∑
ind=0

Tbcast(c, (r − ind) ∗ block dim2) +

panels num−1∑
pan it=0

[panel dim−1∑
in it=0

(
Tchol(block dim, 6) + Tbcast(

√
p/c, block dim2) +

(2r/c− in it/
√
p/c) ∗ Tdtrsm(block dim, 6) +

Tbcast(
√
p/c, (2r/c− in it/

√
p/c) ∗ block dim2) +

Tbcast(
√
p/c, (panel dim/

√
p/c− in it/

√
p/c) ∗ block dim2) +

(panel dim/
√
p/c− in it/

√
p/c) ∗ (2r/c− in it/

√
p/c) ∗ Tdgemm(block dim, 6)

)
+

(1− δpanels num−1(pan it)) ∗(
(c− 1− (pan it ∗ (panel dim/

√
p/c)/(r/c))) ∗ panel dim/

√
p/c ∗ Tbcast(c, (r/c) ∗ block dim2) +

panel dim/c−1∑
col=0

[
2 ∗ Tbcast(

√
p/c, (r − panel dim/

√
p/c ∗ pan it− 1) ∗ block dim2) +

(r − panel dim/
√
p/c ∗ pan it− 1) ∗ (r − panel dim/

√
p/c ∗ pan it)

2
∗ Tdgemm(block dim, 6)

]
+

panel dim√
p/c

−1∑
red=0

TAllreduce(c, (r − panel dim/
√
p/c ∗ (pan it+ 1)− red) ∗ block dim2)

)]

TChol 2.5D overlp =

r−1∑
ind=0

Tbcast(c, (r − ind) ∗ block dim2) +

panels num−1∑
pan it=0

[panel dim−1∑
in it=0

(
Tchol(block dim, 5) + Tbcast(

√
p/c, block dim2) +

(2 ∗ r/c− in it/
√
p/c) ∗ Tdtrsm(block dim, 5) +

Tbcast(
√
p/c, (2r/c− in it/

√
p/c) ∗ block dim2) +

Tbcast(
√
p/c, (panel dim/

√
p/c− in it/

√
p/c) ∗ block dim2) +

(panel dim/
√
p/c− in it/

√
p/c) ∗ (2r/c− in it/

√
p/c) ∗ Tdgemm(block dim, 5)

)
+

(1− δpanels num−1(pan it)) ∗(
(c− 1− (pan it ∗ (panel dim/

√
p/c)/(r/c))) ∗ panel dim/

√
p/c ∗ Tbcast(c, (r/c) ∗ block dim2) +

2 ∗ Tbcast(
√
p/c, (r − panel dim/

√
p/c ∗ pan it− 1) ∗ block dim2) +

panel dim/c−2∑
col=0

max
[
2 ∗ Tbacst(

√
p/c, (r − panel dim/

√
p/c ∗ pan it− 1) ∗ block dim2),

(r − panel dim/
√
p/c ∗ pan it− 1) ∗ (r − panel dim/

√
p/c ∗ pan it)

2
∗ Tdgemm(block dim, 5)

]
+

(r − panel dim/
√
p/c ∗ pan it− 1) ∗ (r − panel dim/

√
p/c ∗ pan it)

2
∗ Tdgemm(block dim, 5) +

panel dim√
p/c

−1∑
red=0

TAllreduce(c, (r − panel dim/
√
p/c ∗ (pan it+ 1)− red) ∗ block dim2)

)]

